Computing Simulations on Finite and Infinite Graphs
نویسندگان
چکیده
We present algorithms for computing similarity relations of labeled graphs. Similarity relations have applications for the refinement and verification of reactive systems. For finite graphs, we present an O(mn) algorithm for computing the similarity relation of a graph with n vertices and m edges (assuming m 2 n). For effectively presented infinite graphs, we present a symbolic similarity-checking procedure that terminates if a finite similarity relation exists. We show that 2D rectangular automata, which model discrete reactive systems with continuous environments, define effectively presented infinite graphs with finite similarity relations. It follows that the refinement problem and the VCTL’ model-checking problem are decidable for 2D rectangular automata.
منابع مشابه
The Cycle Space of an Infinite Graph
Finite graph homology may seem trivial, but for infinite graphs things become interesting. We present a new approach that builds the cycle space of a graph not on its finite cycles but on its topological circles, the homeomorphic images of the unit circle in the space formed by the graph together with its ends. Our approach permits the extension to infinite graphs of standard results about fini...
متن کاملOn trivial ends of Cayley graph of groups
In this paper, first we introduce the end of locally finite graphs as an equivalence class of infinite paths in the graph. Then we mention the ends of finitely generated groups using the Cayley graph. It was proved that the number of ends of groups are not depended on the Cayley graph and that the number of ends in the groups is equal to zero, one, two, or infinity. For ...
متن کاملDuality in Infinite Graphs
The adaption of combinatorial duality to infinite graphs has been hampered by the fact that while cuts (or cocycles) can be infinite, cycles are finite. We show that these obstructions fall away when duality is reinterpreted on the basis of a ‘singular’ approach to graph homology, whose cycles are defined topologically in a space formed by the graph together with its ends and can be infinite. O...
متن کاملOn Extremal Graph Theory, Explicit Algebraic Constructions of Extremal Graphs and Corresponding Turing Encryption Machines
We observe recent results on the applications of extremal graph theory to cryptography. Classical Extremal Graph Theory contains Erdős Even Circuite Theorem and other remarkable results on the maximal size of graphs without certain cycles. Finite automaton is roughly a directed graph with labels on directed arrows. The most important advantage of Turing machine in comparison with finite automat...
متن کاملComputing Szeged index of graphs on triples
ABSTRACT Let G=(V,E) be a simple connected graph with vertex set V and edge set E. The Szeged index of G is defined by where respectively is the number of vertices of G closer to u (respectively v) than v (respectively u). If S is a set of size let V be the set of all subsets of S of size 3. Then we define t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1995